
Probability review

This review sheet provides a summary of some of the important definitions and properties from
probability which will be useful in STA 711. It is by no means complete. For full details, see Casella
& Berger, chapters 1, 2, and 4.

CDFs, density functions, and probability mass functions

• Cumulative distribution function (cdf): Let X be a random variable. The cdf of X is defined
by

FX(x) = P(X ≤ x).

• X is a continuous random variable if FX(x) is a continuous function of x, and X is a discrete
random variable if FX(x) is a step function of x.

• Probability mass function (pmf): The pmf of a discrete random variable X is f(x) = P(X =
x).

• Probability density function (pdf): The pdf of a continuous random variable X is the function
which satisfies

FX(x) =

x∫
−∞

f(x)dx.

Joint, marginal, and conditional distributions

Let X and Y be two random variables.

• Joint cdf: The joint cdf of X and Y is

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

• Joint mass function: If X and Y are discrete, their joint mass function is f(x, y) = P(X =
x, Y = y).

• Joint pdf : If X and Y are continuous, their joint pdf is the function f(x, y) such that for
every set A ⊂ R× R,

P((X,Y ) ∈ A) =

∫
A

∫
f(x, y)dxdy

• Marginal distributions: Given a joint pdf f(x, y), the marginal pdf of X is given by

fX(x) =

∞∫
−∞

f(x, y)dy

and the marginal pdf of Y is given by

fY (y) =

∞∫
−∞

f(x, y)dx

(For discrete random variables, the definitions are similar, just replace integrals with sums)
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• Conditional distributions: Given a joint pdf or pmf f(x, y), the conditional pdf/pmf of X|Y =
y is defined by

f(x|y) =
f(x, y)

fY (y)
,

for any y such that fY (y) > 0.

Probability, expectation, and variance

• Expectation: The expectation, or mean, of a random variable X is

E[X] =


∑
x
xf(x) X is discrete

∞∫
−∞

xf(x)dx X is continuous

• Variance: The variance, or second central moment, of a random variable X is

V ar(X) = E[(X − E(X))2]

• Covariance: If X and Y are two random variables, the covariance of X and Y is

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

• Conditional expectation: The conditional expectation of X given Y = y, denoted E[X|Y = y],
is given by

E[X|Y = y] =


∑
x
xf(x|y) X is discrete

∞∫
−∞

xf(x|y)dx X is continuous

• Law of total probability : Let A be an event and B1, ..., Bk be disjoint event which partition
the space (i.e, P (Bi ∩Bj) = 0 if i 6= j, and

∑
i P (Bi) = 1). Then,

P (A) =

k∑
i=1

P (A|Bi)P (Bi)

• Law of total expectation (aka law of iterated expectation):

E[X] = E[E[X|Y ]]

(Note here that E[X|Y ] is a random variable which is a function of Y ). We can apply this
rule to conditional expectations, too:

E[X|Y1] = E[E[X|Y1, Y2]|Y1]

• Law of total variance (aka law of iterated variance):

V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])
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Functions of random variables

• Law of the unconscious statistician: Let X be a random variable with pdf or pmf f(x)
(depending on whether X is continuous or discrete). Let g(X) be a function of X. Then

E[g(X)] =
∑
x

g(x)f(x) X is discrete

E[g(X)] =

∞∫
−∞

g(x)f(x)dx X is continuous

• Finding the distribution of a transformation: Let X be a continuous random variable with
pdf fX(x), and let Y = g(X) be a function of X. To find the distribution of Y :

1. For each y, find the set Ay = {x : g(x) ≤ y}
2. Find the cdf:

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) =

∫
Ay

fX(x)dx

3. The pdf is fY (y) = d
dyFY (y)

There is a special case when g is a monotone function. If X is continuous and g is monotone,
then

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ .
This special case can be extended if there exists a partition such that g is monotone on each
piece of the partition (see Theorem 2.1.8 in Casella & Berger).

Moment generating functions

• Moments: Let X be a random variable. The nth moment of X is E[Xn].

• Moment generating function (mgf): The mgf of X is MX(t) = E[etX ], provided that the
expectation exists for t in some neighborhood of 0.

• Properties of mgfs:

(a) If X has mgf MX(t), then E[Xn] =
dn

dtn
MX(t)

∣∣∣∣
t=0

(b) If X and Y are independent, with mgfs MX(t) and MY (t), then the mgf of X + Y is

MX+Y (t) = MX(t)MY (t)

(c) Let X and Y be random variables with cdfs FX and FY . If MX(t) = MY (t) for all t in
an open interval around 0, then FX(u) = FY (u) for all u.

(d) Let a, b ∈ R, and let Y = a + bX. The mgf of Y is

MY (t) = eatMX(bt).
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Statistics with matrix algebra

• Definition of expectation and variance: Let X = (X1, ..., Xk)T ∈ Rk be a random vector.
Then

E[X] = (E[X1], ...,E[Xk])T ,

and
V ar(X) = Σ

where Σ ∈ Rk×k is the covariance matrix for X, with entries Σij = Cov(Xi, Xj). (This implies
that the diagonal entries are Σii = V ar(Xi)).

• Expectation and variance of linear combinations: Let X ∈ Rk be a random vector, and let
a ∈ Rk and B ∈ Rm×k. Then

E[a + BX] = a + BE[X]

V ar(a + BX) = BV ar(X)BT

• Matrix square roots: If M is a positive semi-definite matrix, then M
1
2 is the unique pos-

itive semi-definite matrix such that M = M
1
2M

1
2 . If M = diag(m1, ...,mk), then M

1
2 =

diag(
√
m1, ...,

√
mk).

• Block matrix inverses: Let

M =

[
A B
C D

]
be a block matrix with A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p, and D ∈ Rq×q. Assuming that A
and D are invertible, then

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]
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