Logistic regression assumptions and diagnostics

Last time: IRLS for logistic weights
$$B^{(r+1)} = (X^T W^{(r)} X)^{-1} X^T W^{(r)} Z^{(r)} \xrightarrow{responses}$$

$$Z^{(r)} = X B^{(r)} + (W^{(r)})^{-1} (Y - p^{(r)})$$

 $\int W^{(0)} \int i i = P_i^{(0)} \left(1 - P_i^{(0)} \right)$

Initialization:
$$P_{i}^{(6)} = \begin{cases} 0.25 & \forall i = 0 \\ 0.75 & \forall i = 1 \end{cases}$$

$$\log\left(\frac{\rho_{i}}{1-\rho_{i}}\right) = \beta^{T}\chi_{i}$$

$$\left[\chi_{\beta}^{(6)}\right]_{i}^{i} = \log\left(\frac{\rho_{i}^{(6)}}{1-\rho_{i}^{(6)}}\right)$$

Plan going forward

So far: Parameter estimation w/MLE, fitting logistic regression models (HW 1-3)

Exam 1: tentatively released Friday, Feb. 10

- take home, probably closed notes

Next up: Diagnostics for legistic regression.

Properties of MLES

Motivating example: Dengue data

Data: Data on 5720 Vietnamese children, admitted to the hospital with possible dengue fever. Variables include:

- Sex: patient's sex (female or male)
- Age: patient's age (in years)
- WBC: white blood cell count
- PLT: platelet count
- other diagnostic variables...
- Dengue: whether the patient has dengue (0 = no, 1 = yes)

Previously: Logistic regression model

$$Y_i = ext{dengue status} \ (0 = ext{negative}, 1 = ext{positive})$$
 $Y_i \sim Bernoulli(p_i)$ $\logigg(rac{p_i}{1-p_i}igg) = eta_0 + eta_1 WBC_i$

What assumptions does this logistic regression model make? How should we assess these assumptions? Discuss with your neighbor for 2--3 minutes, then we will discuss as a group.

Assumptions

·Shape:

Diagnostics

. log odds really are a linear function of the

Some kind of plot? Some kind of residuals?, (today)

explanatory variables. Pi E (0,1)

. Think about data generating process

· Independence: li ar independent

· Leverage & Cooks distance (next time)

· Lack of atliers: All responses are generated from the Same Braces Baward (same Bawarters)
for all observations)

· Binay response

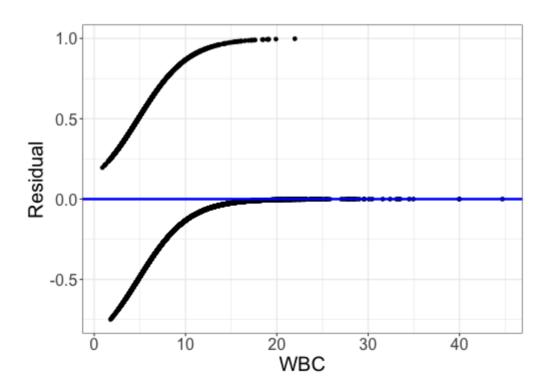
Yi ~ Bernoulli(pi) Var [tilxi] = pil-pi)

4: ~N (Mi, 022) Vai [tilxi] = 0 22

Don't use usual residuals for logistic regression

Fitted model:
$$\log \left(\frac{\hat{p}_i}{1 - \hat{p}_i} \right) = 1.737 - 0.361~WBC_i$$

Residuals $Y_i - \hat{p}_i$:



Assessing shape with empirical logit plots

Example: Putting data. Interested in the relationship between the length of a putt, and whether it was made:

$$Y_i \sim Bernoulli(p_i)$$

$$\logigg(rac{p_i}{1-p_i}igg) = eta_0 + eta_1 \ Length_i$$

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Stimate log (P)	$\left(\hat{\hat{\rho}}\right)$	a	~)	plot	again
empirice!	100	its			

6/16

Empirical logits

Step 1: estimate the probability of success for each length of putt

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Probability of success \hat{p}	0.832	0.739	0.565	0.488	0.328

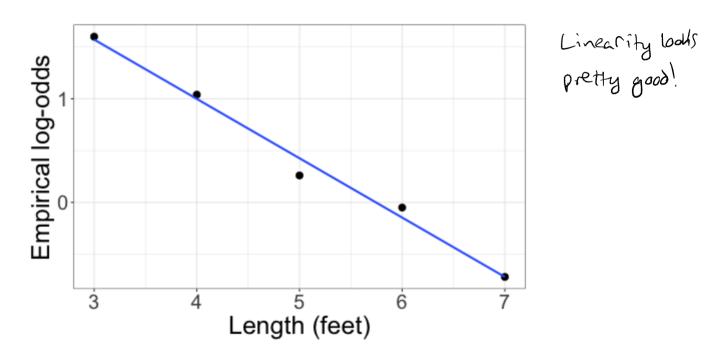
Empirical logits

Step 2: convert empirical probabilities to empirical log odds

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Probability of success \hat{p}	0.832	0.739	0.565	0.488	0.328
Odds $rac{\hat{p}}{1-\hat{p}}$	4.941	2.839	1.298	0.953	0.489
$Log\text{-odds} \log \! \left(\frac{\hat{p}}{1 - \hat{p}} \right)$	1.60	1.04	0.26	-0.05	-0.72

Empirical logits

Step 3: plot empirical log-odds against predictor, and add a least-squares line



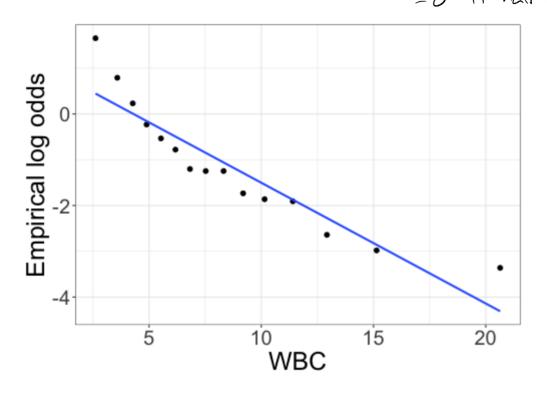
Does it seem reasonable that the log-odds are a linear function of length?

Back to the dengue data...

WBC	0.90	1.15	1.23	1.25	1.54	1.58	•••
Dengue = 0	0	0	0	0	0	0	•••
Dengue = 1	1	2	1	1	3	1	•••

What problem do I run into?

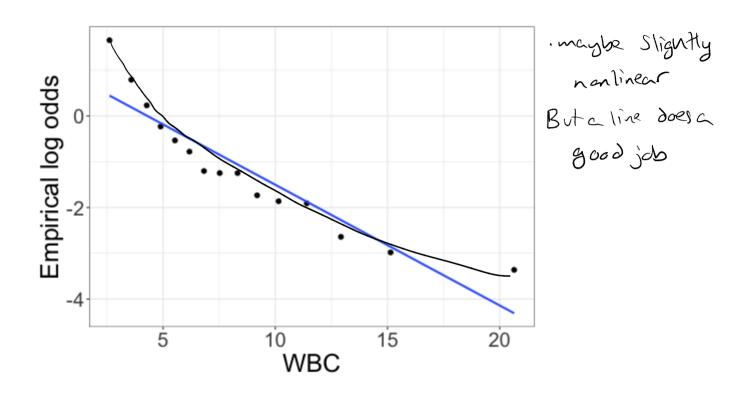
Categorical variable (nair color, e.g.) log (ni) = Bo + B, Red; + B2 Blandi + B3 Blandi +



1) specify noins (usually want at least 8-10, but depends on 2) Divide data into noins groups bused on wBC 3) In each bin, calculate empirical log adds

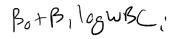
y) Plot!

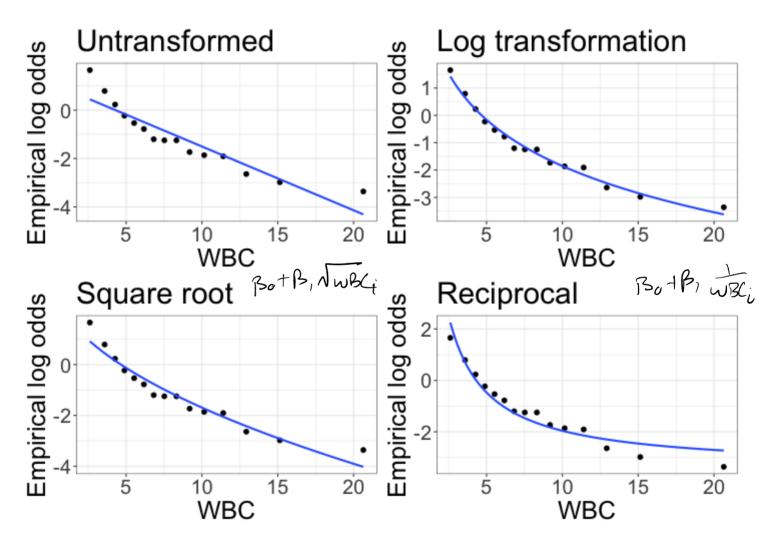
Binned empirical logit plots



Does it seem reasonable that the log-odds are a linear function of WBC?

Trying some transformations

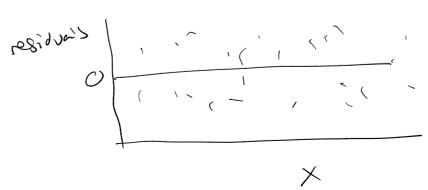




Why residuals in linear regression are nice ,



random Scatter



(E[r, 1x]>0	1 residual plat
E[ril xi] <0 [[] [] [] [] [] [] [] [] [] [] [] [] []	
· patterns in residual plot indicate issues with our model	pattern! X
residuals are continuous	

Quantile residuals for logistic regression

Class activity

https://sta711-s23.github.io/class_activities/ca_lecture_9.html