Confidence intervals

Warm-up: Pivots

Let
$$X_1,\ldots,X_n \overset{iid}{\sim} Exponential(heta)$$
, with density $f(x| heta) = heta e^{- heta x}$.

Find a pivotal quantity $Q(X_1,\ldots,X_n,\theta)$ and construct a 1-lpha confidence interval for heta using the pivotal quantity.

Hints:

- Begin with the maximum likelihood estimate of θ , which is
- If $X \sim Exponential(heta)$, then $cX \sim Exponential\left(rac{ heta}{c}
 ight)$ $Exponential\left(rac{1}{2}
 ight) = \chi_2^2$

$$X_{1},...,X_{n}$$
 $\stackrel{iii}{\sim}$ $E \times \rho(\theta)$ $\stackrel{if}{\sim}$ $X_{n} = 202 \times i$ $\Rightarrow c \times \sim E \times \rho(\theta)$ $\Rightarrow c \times \rho(\theta)$ \Rightarrow

$$\Rightarrow 20 \hat{2} \times i \sim \chi_{2n}^2 =$$

Next, want a, b st
$$P_0(a \le 20 £ X_i \le b) = 1 - \alpha$$

e,g. $a = 0$ $b = X_{2n,\alpha}^2$

e,y.
$$a = 0$$
 $b = \chi^{2}_{2n,\alpha}$
 $a = \chi^{2}_{2n,1-\frac{\alpha}{2}}$, $b = \chi^{2}_{2n,\frac{\alpha}{2}}$

$$\alpha = \chi_{2n,1-\frac{5}{2}}$$
, $b = \chi_{2}$

$$a = 20 \frac{2}{2} \times 1 = 5$$

$$\frac{a}{22} \times 1 = 5$$

$$\frac{b}{22} \times 1 = 5$$

$$\Delta = \lambda_{20}, (-\hat{z})$$

$$= 20 \hat{4} \times \hat{z} = 5$$

$$\chi_{\hat{i}} = \lambda_{\hat{i}}$$

By continuous mapping, if
$$\hat{\Theta} \approx N(\theta, \text{Ver}(\hat{\Theta}))$$

Wald CI

 $\Rightarrow g(\hat{\Theta}) \stackrel{2}{\Rightarrow} \dots$

Let $X_1,\ldots,X_n \overset{iid}{\sim} Exponential(heta)$, with density $f(x| heta) = heta e^{- heta x}$.

MLE:
$$\frac{1}{x} = \frac{1}{2x}$$

wald CI: by a symptotic normality of MLE,
$$\hat{O} \approx N(\Theta, \chi^{-1}(\Theta)) \qquad \chi(\Theta) = \hat{\Theta}^{2}$$

$$= \hat{O} \approx N(\Theta, \frac{\Theta^{2}}{n}) \qquad = 2 \chi^{-1}(\Theta) = \frac{\Theta^{2}}{n}$$

$$= \chi^{-1}(\Theta) = \frac{\Theta^{2}}{n}$$

$$= \chi^{-1}(\Theta) = \frac{\Theta^{2}}{n}$$

$$= \chi^{-1}(\Theta) = \frac{\Theta^{2}}{n}$$

$$= \chi^{-1}(\Theta) = \frac{\Theta^{2}}{n}$$

Can we find a transformation $g(\hat{\theta})$ such that $Var(g(\hat{\theta}))$ does not depend on θ

$$\hat{0} \rightarrow 0 \rightarrow g(\hat{0}) \rightarrow g(\hat{0})$$

Delta method

Suppose $\hat{ heta}$ is an estimate of $heta \in \mathbb{R}$, such that

$$\sqrt{n}(\hat{ heta}- heta)\stackrel{d}{
ightarrow} N(0,\sigma^2)$$

for some σ^2 , and g is a continuously differentiable function with $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(\hat{ heta})\!\!-g(heta))\stackrel{d}{
ightarrow} N(0,\sigma^2[g'(heta)]^2)$$

Proof sketch:

- lacktriangle First-order Taylor expansion of $g(\hat{ heta})$ around heta
- Slutsky's theorem

 $\frac{1}{2}$ $9(0) N(0, 5^2)$

= $N(0, [q'(\theta)]^2 \sigma^2)$

/

Variance stabilizing transformations

Example

Suppose that $X_1,\ldots,X_n \overset{iid}{\sim} Bernoulli(p)$.