Neyman-Pearson lemma

Wald test for normal mean

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} N(\mu,\sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0 \quad H_A: \mu = \mu_1$$

where $\mu_1 > \mu_0$.

ward test: reject the if
$$\frac{X_n - M_0}{\sigma / \sqrt{n}} > Z_{\alpha}$$
i.e. $X_n > M_0 + \frac{\sigma}{\sqrt{n}} Z_{\alpha} = C_{\alpha}$

Wald test for normal mean

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} N(\mu,\sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0 \quad H_A: \mu = \mu_1$$

where $\mu_1 > \mu_0$.

The Wald test rejects if

$$\overline{X}_n > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

We know that $\beta(\mu_0) = \alpha$ for this test.

Does there exist a different test, with power function $\beta^*(\mu)$, such that $\beta^*(\mu_0) \leq \alpha$ and $\beta^*(\mu_1) > \beta(\mu_1)$?

$$\frac{2}{5}\left(x_{1}-y_{2}\right)^{2}=\frac{2}{5}\left(x_{1}^{2}-2ux_{1}^{2}+y_{2}^{2}\right)=\frac{2}{5}x_{1}^{2}-2ux_{1}^{2}+y_{2}^{2}$$

Rearranging the Wald test for a population mean

Rearranging the valid test for a population mean rejects
$$M_0$$
 when $X_n > C_0$
 $(x_0 - x_1) = (x_0 - x_1) = (x_$

 $= \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} \frac{2i(x_i - \mu_i)^2}{2\sigma^2} \right\} = \exp \left\{ -\frac{(\ln(\omega (\mu_0 - \mu_i) - n\mu_0^2 + n\mu_i^2)}{2\sigma^2} \right\}$ (NZMOZ) exp{-1/202 &: [X:-Mo]2} $L=> \frac{f(X_0,...,X_n | M_0)}{f(X_0,...,X_n | M_0)} > K_0$

Rearranging the Wald test for a population mean

Let $\mathbf{X} = X_1, \dots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0 \quad H_A: \mu = \mu_1$$

where $\mu_1 > \mu_0$.

The Wald test rejects if $\overline{X}_n > \omega$, which is equivalent to rejecting when

$$rac{L(\mu_1|\mathbf{X})}{L(\mu_0|\mathbf{X})} = rac{f(X_1,\ldots,X_n|\mu_1)}{f(X_1,\ldots,X_n|\mu_0)} > k_0$$

Intuition: Reject H_0 if the likelihood of μ_1 is sufficiently greater than the likelihood of μ_0 .

Neyman-Pearson test

Let
$$X_1, ..., X_n$$
 be a sample from a distribution with probability function f , and parameter θ .

To test $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$,

the Neyman-Pearson test rejects H_0 when

$$\frac{L(\theta_1 \mid X)}{L(\theta_0 \mid X)} = \frac{f(X|\theta_0)}{f(X|\theta_0)} \Rightarrow H,$$

where H is chosen so that $B(\theta_0) = d$.

Neyman-Pearson lemma

Lemma: The Neyman-Rearson test is a uniformly most pawerful level & test of Ho: 0=00 vs. HA: 0=0; Cire., Brp (01) ≥ B* (01) For any other &-level test).

Def: Consider testing Ho: 06(H) vs. MA: 06(D)

Let Cx be the set of level-& tests for these hypotheses.

A test in Cx is the uniformly most pawerful level & test.

Example

Let $\mathbf{X} = X_1, \dots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0 \quad H_A: \mu = \mu_1$$

where $\mu_1 > \mu_0$.

The Wald test rejects when

$$rac{L(\mu_1|\mathbf{X})}{L(\mu_0|\mathbf{X})} > k,$$

where
$$k$$
 is chosen such that $\beta(\mu_0)=\alpha$.

=> wald test for these hypotheses is a uniformly most pawerful test

Example

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} Exponential(\theta)$, with pdf $f(x|\theta)=\theta e^{-\theta x}$. We want to test

$$H_0: heta = heta_0 \quad H_A: heta = heta_1,$$

where $\theta_1 < \theta_0$. The Neyman-Pearson test rejects when

$$rac{L(heta_1|\mathbf{X})}{L(heta_0|\mathbf{X})}>k.$$

Find k such that the test has size α .

$$B(\Theta_0) = d \Rightarrow P_{\Theta_0} \left(\frac{L(\Theta_0|X)}{L(\Theta_0|X)} > H \right) = d$$

$$\frac{|\mathcal{L}(0_0|X)|}{|\mathcal{L}(0_0|X)|} = \frac{|\mathcal{L}(0_0|X)|}{|\mathcal{L}(0_0|X)|} > K$$

$$\frac{|\mathcal{L}(0_0|X)|}{|\mathcal{L}(0_0|X)|} = \frac{|\mathcal{L}(0_0|X)|}{|\mathcal{L}(0_0|X)|} > K$$

under Ho, Eixi ~ Gamma(n, Oo)

=> choose K such that log(\(\frac{\theta_c}{\theta_i}\))

$$P_{\Theta_{O}} \left(\frac{1}{L(\Theta_{O}|X)} \right)$$

 $exp\{ \xi_i \times (0_0 - 0_1) \} > H(\frac{\theta_0}{\theta_i})^n$

 $\mathcal{E}:X:$ > $\log u + n \log \left(\frac{\Theta_0}{\Theta_1}\right)$

 $\frac{2}{2}$ Xi ~ Gamma(1,0) $(f_{2x}(x) = \frac{6}{\Gamma(n)}x^{-1}e^{-6x})$

00 - O1

Gamma (n, Oa)

(Oo-Oi) EiXi > log K + ~ log (Oc)