Convergence of random variables

Warm-up

Suppose that $X_1, X_2, \ldots \stackrel{iid}{\sim} Uniform(0,1).$ Let $X_{(n)} = \max\{X_1, \ldots, X_n\}.$

Working with a neighbor, argue that $X_{(n)}\stackrel{p}{
ightarrow} 1.$

$$\frac{Pf}{P(1 \times 10^{-1})} = 1 - P(-\xi \leq x_{10} - 1 \leq \xi) \Rightarrow 0 \quad \text{as } n \Rightarrow \infty$$

$$P(1 \times 10^{-1}) \geq \xi = 1 - P(-\xi \leq x_{10} - 1 \leq \xi)$$

$$= 1 - P(1 - \xi \leq x_{10}) \leq 1 + \xi = 1$$

$$= 1 - P(x_{10}) \geq 1 - \xi = P(x_{1} \leq 1 - \xi)$$

$$= P(x_{10}) \leq 1 - \xi = P(x_{1} \leq 1 - \xi)$$

$$= P(x_{10}) \leq 1 - \xi = P(x_{1} \leq 1 - \xi)$$

$$= (1 - \xi) \Rightarrow 0 \quad \text{as } n \Rightarrow \infty$$

$$= (1 - \xi) \Rightarrow 0 \quad \text{as } n \Rightarrow \infty$$

Suppose that $X_1, X_2, \ldots \stackrel{iid}{\sim} Uniform(0,1)$. Let $X_{(n)} = \max\{X_1, \dots, X_n\}.$

Show that $n(1-X_{(n)})\stackrel{d}{
ightarrow} Y$, where $Y\sim Exp(1)$.

Pf: WTS
$$F_{n(1-x_{in})}(t) \Rightarrow F_{\gamma}(t)$$
 $\forall t \text{ where } F_{\gamma}(t)$ is continvals

$$F_{n(1-x_{in})}(t) = P(-x_{in}) \xrightarrow{L} t$$

$$= P(1-x_{in}) \xrightarrow{L} t$$

$$= 1 - P(x_{in}) \xrightarrow{L} t$$

$$= 1 - (1-\frac{t}{n})$$

Relationships between types of convergence

(a) If
$$X_n \stackrel{\text{a.s.}}{\rightarrow} X$$
, then $X_n \stackrel{\text{p}}{\rightarrow} X$

(b) If
$$x_n \stackrel{p}{\rightarrow} x$$
, then $x_n \stackrel{o}{\rightarrow} x$

(c) If
$$x_n \rightarrow c$$
, where cis a constant, then $x_n \rightarrow c$

Let
$$u \sim u \sim tor \sim (0, 1)$$
, and $construct = 1$ $u \in [0, 1]$ $x_1 = 1$ $u \in [0, 1]$ $x_2 = 1$ $u \in [0, 1]$ $x_3 = 1$ $u \in [0, 1]$ $x_4 = 1$ $u \in [0, 1]$ $x_5 = 1$

$$\chi_{u} = 1 \{ u \in [0, \pm] \}, \quad \chi_{s} = 1 \{ u \in [\pm 1, \pm] \}, \quad \ldots$$

$$X_{n} = \underbrace{1}_{2} \underbrace{$$

$$\sum_{x} = \sum_{x} \frac{1}{2} \frac{1}{2$$

(2)
$$\times_n \neq 0$$
 Pf; $\lim_{n \to \infty} |\chi_n - 0|$ does not exist. For any u , there are infinitely many n st $\times_n = 1$

Want: if x = 0, then lim lx-ol = 0 i.e., Y 8>0, J no St V n = no, 1xn-0/48 But: let $8 = \frac{1}{2}$. $\forall n_0$, $\exists n > n_0$ st $x_n = 1$

=> 3 ~> ~ St |x-0| > 8

=> lim [xn-ol does not exist

Proof of (b) (this) >> xm 3> x) Proof sheten: WTS Fx (x) >> Fx(x) Yx where F is continuous, as n >> 00 we know $F(x-\xi) \leq F(x) \leq F(x+\xi)$ $\forall \xi > 0$ (cof is non-decreasing) Also, if x is a continuity point of F, then $\lim_{\xi \to 0} F(x-\xi) = \lim_{\xi \to 0} F(x+\xi) = F(x)$ So, it suffices to show that YEZO, \(\frac{F(x-\xi)}{n^200}\) Formal proof: Let \$>0, and x be a continuity point of F. $+ P(X_n \pm x, X > x + E)$ (disjoint partition) $F_{X_n}(x) = P(X_n \leq x) = P(X_n \leq x, X \leq x + \epsilon)$ cand x > x+8 LP(X = x+E) FB(1 X - X1>E). => Fx, (x) = F(x+E) + P(1xn-x1>E) -> X > X >1c x -> X 1 X -X) > (x+E)-x -> 0 as n >> 0 = & $Similarly, F(x-E) - P(|x_-x| > E) \leq F_{x_n}(x)$ -> 0 cs n>70 =7 $F(x-\xi)$ $\stackrel{!}{=}$ $\lim_{n\to\infty} F_{x_n}(x) \stackrel{!}{=} F(x+\xi)$

Proof of (c)
$$(x_n)$$
 c then x_n S_n C_n

WTS $P(1X_n-c1>E) \Rightarrow 0$ $Y \in 70$

Let $E \neq 0$. $P(1X_n-c1>E) = P(X_n \land C_n \in C_n \land X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in C_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in C_n) + P(X_n \land C_n \in E_n)$
 $= F_{X_n}(C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= F_{X_n}(C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= F_{X_n}(C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= F_{X_n}(C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X_n \land C_n \in E_n) + P(X_n \land C_n \in E_n)$
 $= P(X$

Continuous mapping theorem

Slutsky's theorem