Convergence of random variables

Where we're heading

Convergence in probability

Definition: A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n o\infty}P(|X_n-X|\geq arepsilon)=0$$

We write $X_n \stackrel{p}{ o} X$.

Example: (Weak law of large numbers)

Let
$$X_1, X_2, \dots$$
 be iid with $\mathbb{E}[X_i] = M$ and $Var(X_i) = \sigma^2 \times \infty$.

Let $X_n = \frac{1}{2} \times X_i$. Then $X_n \to M$

$$\overline{X}_{n} = \frac{1}{n} \cdot \frac{2}{2} \times i \qquad \text{(iid)}$$

$$V_{cr}(\overline{X}_{n}) = \frac{1}{n^{2}} \cdot \frac{2}{n^{2}} \cdot \frac{2}{n^{2}} \cdot \frac{1}{n^{2}} \cdot \frac{2}{n^{2}} \cdot \frac{2}{n^{2}} \cdot \frac{2}{n^{2}}$$

Theorem: Let X_1, X_2, \ldots be iid random variables with $\mathbb{E}[X_i] = \mu$ and $Var(X_i)=\sigma^2<\infty$. Then Elgi=Elgi= 1. E.ECXI $\overline{X}_n \stackrel{p}{ o} \mu$

Working with your neighbor, apply Chebyshev's inequality to prove the WLLN.

Pf: Let
$$\xi > 0$$
. WTS $P(|X_n - \mu| \ge \xi) \rightarrow 0$ as $n \Rightarrow \infty$.

$$P(|X_n - \mu| \ge \xi) \leq \frac{\text{Var}(X_n)}{\xi^2} \quad \text{(chebyshev)}$$

$$\text{Var}(X_n) = \frac{\sigma^2}{n} \Rightarrow 0 \leq P(|X_n - \mu| \ge \xi) \leq \frac{\sigma^2}{n \cdot \xi^2} \rightarrow 0$$

$$\text{(as } n \Rightarrow \infty)$$

Another example

Let $U \sim Uniform(0,1)$, and let $X_n = \sqrt{n} \ \mathbb{I}\{U \leq 1/n\}$.

Show that $X_n \stackrel{p}{ o} 0$.

Almost sure convergence

Definition: A sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X if, for every $\varepsilon > 0$,

$$P(\lim_{n o\infty}|X_n-X|$$

We write $X_n \overset{a.s.}{ o} X$.

Example: (Strong law of large numbers)

Let X1, X7, be iid with E[Xi]=M
and Ver(Xi) =
$$\sigma^2$$
 < ∞ . Then \overline{X} $n \rightarrow \infty$.
(proof sketen in $C \geq B$)

Convergence in distribution

Definition: A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n o\infty}F_{X_n}(x)=F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{ o} X$.

Example: (Central limit theorem)

Let
$$X_1, X_2, \dots$$
 be a sequence of find random variables whose mgfs exist in a neighborhood of O .

Let $E(X_1) = M$, and $Var(X_1) = \sigma^2$. Then

 $In(X_1 - M) \Rightarrow Z \qquad Z \sim N(O, 1)$

Multivariate CLT: $In(X_1 - M) \Rightarrow Z \sim N(O, 2)$

Another example

Let
$$X \sim N(0,1)$$
, and let $X_n = -X$ for $n=1,2,3,\ldots$

Show that $X_n \overset{d}{ o} X$, but X_n does *not* converge to X in probability.

Pf: wts
$$F_{x_n}(x) \rightarrow F_{x_n}(x)$$
 $\forall x \text{ where } F_{i,s}$
 $X_n \sim N(0,i)$
 $F_{x_n}(x) \equiv F_{x_n}(x)$ $\forall x \Rightarrow x$
 $F_{x_n}(x) \equiv F_{x_n}(x)$ $\forall x \Rightarrow x$

But: $P(|X_n - x| \ge \xi) = P(|2x| \ge \xi)$
 $= P(|x| \ge \frac{\xi}{2}) \not\rightarrow 0$
 $= 7 \times \frac{\xi}{2} \times \frac{\xi}{2}$

Relationships between types of convergence