Logistic regression assumptions and diagnostics · Hw 4 released on cause website, are next Friday · Exam 1 released next Friday (Feb. LO) . take-home · closed notes · covers HW 1-3 ## Multicollinearity Multicollinearity occurs when one explanatory Definition: variable can be approximated by a linear combination other explanately variables of tre Ti~ Berneuli(Pi) E.g. log(Pi) = Bo+B1Xi1 +B2Xi2 +B3Xi3 worst-case Scenario: xi1 = d2 xi2 + d3 xi3 Yi => log $\left(\frac{\rho_i}{1-\rho_i}\right)$ = $\beta_0 + \left(\beta_1 \alpha_2 + \beta_2\right) x_{i2} +$ (B, a3 + B3) Xi3 can't estimate Bs => too many unknowns, nigher multicollinearity => mere trable with estimation (e.g., nigher variability in estimates) 2/6 ### **Class activity** https://sta711-s23.github.io/class_activities/ca_lecture_11.html - Simulate correlated data - Assess the impact on estimated coefficients # The impact of multicollinearity ·Standard error of B's increases, i.e. variability of B If perfect collinearity between some explanatory variables, we can't estimate standard errors snead peek: $Var(\hat{\beta}) \approx 2^{-1}(\beta) = (X^TWX)^{-1}$ · Multicollinearity also makes it hard to interpret Bs Diagnosing multicallinearity - · Scatterplot motrix of quantitative explanatory variables - · correlation metrix · Variance inflation factors $$log\left(\frac{\rhoi}{l-\rhoi}\right) = BTXi$$ $$\beta = \begin{bmatrix} \beta c \\ \vdots \\ \beta k \end{bmatrix}$$ Variance inflation factors $$\log \left(\frac{\rho_i}{1 - \rho_i} \right) = \beta^T \times i$$ $$\beta = \begin{bmatrix} \beta_i \\ \beta_k \end{bmatrix}$$ VIF: = $$Var(\hat{\beta}_j)$$ using all explanatory variables in model $Var(\hat{\beta}_j)$ using only $X_{ij}S = \begin{bmatrix} X_{ij} \\ X_{ij} \end{bmatrix}$ $$VIF_{j} = \frac{1}{1-R^{2}}$$ VIF = $$\frac{1}{1-R^2}$$ Chefor both linear & legistic) $R_i^2 = R^2$ for regression of Xijs on other explanatory variables #### Addressing model issues How should we handle each of the following issues in a fitted model? - Violations of the shape assumption - An influential point with high Cook's distance - High multicollinearity in the explanatory variables Discuss with your neighbor for 3--5 minutes, then we will discuss as a group. | Assumption | <u>Diagnostics</u> | Fixing violations | |-----------------------------------|---|---| | Shape | · empirical logit plot
· quantile residual plot | transformations! different (more flexible) model (GAMS, forest, NNS) | | No autliers | · Cook's distance
· Other related measurs
CDFFITS, DFBETAS, etc.) | remove errors in data
(e.g. negative SAT score)
Fit with & withat, see if
our conclusions change
try transformations for
SHEWED Explanatory
variables | | No issues w/
multicollinearity | · VIFS
· Scatterplot /correlation
matrix | remove some variables use a different model Add penalty terms combine variables lynore! |