Logistic regression assumptions and diagnostics

· Hw 4 released on cause website, are next Friday

· Exam 1 released next Friday (Feb. LO)

. take-home

· closed notes

· covers HW 1-3

Multicollinearity

Multicollinearity occurs when one explanatory Definition: variable can be approximated by a linear combination other explanately variables of tre Ti~ Berneuli(Pi) E.g. log(Pi) = Bo+B1Xi1 +B2Xi2 +B3Xi3 worst-case Scenario: xi1 = d2 xi2 + d3 xi3 Yi => log $\left(\frac{\rho_i}{1-\rho_i}\right)$ = $\beta_0 + \left(\beta_1 \alpha_2 + \beta_2\right) x_{i2} +$ (B, a3 + B3) Xi3 can't estimate Bs => too many unknowns, nigher multicollinearity =>

mere trable with estimation (e.g., nigher variability in estimates) 2/6

Class activity

https://sta711-s23.github.io/class_activities/ca_lecture_11.html

- Simulate correlated data
- Assess the impact on estimated coefficients

The impact of multicollinearity

·Standard error of B's increases, i.e. variability of B If perfect collinearity between some explanatory variables, we can't estimate standard errors snead peek: $Var(\hat{\beta}) \approx 2^{-1}(\beta) = (X^TWX)^{-1}$

· Multicollinearity also makes it hard to interpret Bs

Diagnosing multicallinearity

- · Scatterplot motrix of quantitative explanatory variables
- · correlation metrix

· Variance inflation factors

$$log\left(\frac{\rhoi}{l-\rhoi}\right) = BTXi$$

$$\beta = \begin{bmatrix} \beta c \\ \vdots \\ \beta k \end{bmatrix}$$

Variance inflation factors
$$\log \left(\frac{\rho_i}{1 - \rho_i} \right) = \beta^T \times i$$

$$\beta = \begin{bmatrix} \beta_i \\ \beta_k \end{bmatrix}$$

VIF: =
$$Var(\hat{\beta}_j)$$
 using all explanatory variables in model $Var(\hat{\beta}_j)$ using only $X_{ij}S = \begin{bmatrix} X_{ij} \\ X_{ij} \end{bmatrix}$

$$VIF_{j} = \frac{1}{1-R^{2}}$$

VIF =
$$\frac{1}{1-R^2}$$

Chefor both linear & legistic)

 $R_i^2 = R^2$ for regression of Xijs on other explanatory variables

Addressing model issues

How should we handle each of the following issues in a fitted model?

- Violations of the shape assumption
- An influential point with high Cook's distance
- High multicollinearity in the explanatory variables

Discuss with your neighbor for 3--5 minutes, then we will discuss as a group.

Assumption	<u>Diagnostics</u>	Fixing violations
Shape	· empirical logit plot · quantile residual plot	transformations! different (more flexible) model (GAMS, forest, NNS)
No autliers	· Cook's distance · Other related measurs CDFFITS, DFBETAS, etc.)	remove errors in data (e.g. negative SAT score) Fit with & withat, see if our conclusions change try transformations for SHEWED Explanatory variables
No issues w/ multicollinearity	· VIFS · Scatterplot /correlation matrix	remove some variables use a different model Add penalty terms combine variables lynore!