Introduction to Logistic Regression

Agenda

- Introductions
- Overview of course details
- Begin logistic regression
- HW1 released on course website

Class overview

- → STA 711 focuses on *statistical inference*: estimation, confidence intervals, and hypothesis testing
- Throughout the semester, topics will be initially motivated by logistic regression
- We will continue with inference and GLMS in STA 712 (Generalized Linear Models)

Grading philosophy

- Focusing on grades can detract from the learning process
- Homework should be an opportunity to practice the material. It is ok to make mistakes when practicing, as long as you make an honest effort
- Errors are a good opportunity to learn and revise your work
- Partial credit and weighted averages of scores make the meaning of a grade confusing. Does an 85 in the course mean you know 85% of everything, or everything about 85% of the material?

Grading in this course

- → I will give you feedback on every assignment
- All assignments are graded as Mastered / Not yet mastered
- If you haven't yet mastered something, you get to try again!

Course components

- Regular homework assignments
 - Practice material from class
 - A subset of questions will be graded
 - You may resubmit "Not yet mastered" questions once
- 3 take-home exams
 - Opportunity to demonstrate mastery of course material
 - Optional make-up exams for "Not yet mastered" questions
- Optional final exam
 - Final opportunity to demonstrate mastery

Assigning grades

To get a **C** in the course:

- Receive credit for at least 4 homework assignments
- Master at least 80% of the questions on one exam

To get a **B** in the course:

- Receive credit for at least 5 homework assignments
- Master at least 80% of the questions on two exams

To get an **A** in the course:

- Receive credit for at least 5 homework assignments
- Master at least 80% of the questions on all three exams

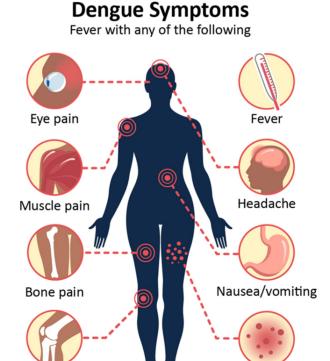
Late work and resubmissions

- → You get a bank of 5 extension days. You can use 1--2 days on any assignment, exam, or project.
- No other late work will be accepted (except in extenuating circumstances!)

Motivating example: Dengue fever

Joint pain

Dengue fever: a mosquito-borne viral disease affecting 400 million people a year



Rash

Motivating example: Dengue data

Data: Data on 5720 Vietnamese children, admitted to the hospital with possible dengue fever. Variables include:

- Sex: patient's sex (female or male)
- Age: patient's age (in years)
- WBC: white blood cell count
- PLT: platelet count
- other diagnostic variables...
- Dengue: whether the patient has dengue (0 = no, 1 = yes)

Motivating example: Dengue data

Data: Data on 5720 Vietnamese children, admitted to the hospital with possible dengue fever. Variables include:

- Sex: patient's sex (female or male)
- Age: patient's age (in years)
- WBC: white blood cell count
- → PLT: platelet count
- other diagnostic variables...
- Dengue: whether the patient has dengue (0 = no, 1 = yes)

Research questions:

- How well can we predict whether a patient has dengue?
- Which diagnostic measurements are most useful?
- Is there a significant relationship between WBC and dengue?

Research questions

- How well can we predict whether a patient has dengue?
- Which diagnostic measurements are most useful?
- Is there a significant relationship between WBC and dengue?

How can I answer each of these questions? Discuss with a neighbor for 2 minutes, then we will discuss as a class.

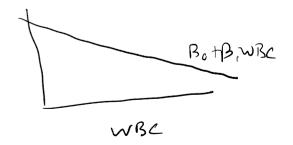
Fitting a model: initial attempt

What if we try a linear regression model?

 $Y_i =$ dengue status of ith patient

$$Y_i = eta_0 + eta_1 WBC_i + arepsilon_i \quad arepsilon_i \overset{iid}{\sim} N(0, \sigma_arepsilon^2)$$

What are some potential issues with this linear regression model?



Second attempt

Let's rewrite the linear regression model:

Yi=
$$B_0 + B_1$$
, $WB(i + E_i)$
 $E[Y_i | WB(i)] = B_0 + B_1 WB(i)$
 $E[Y_i | WB(i)] = B_0 + B_1 WB(i)$

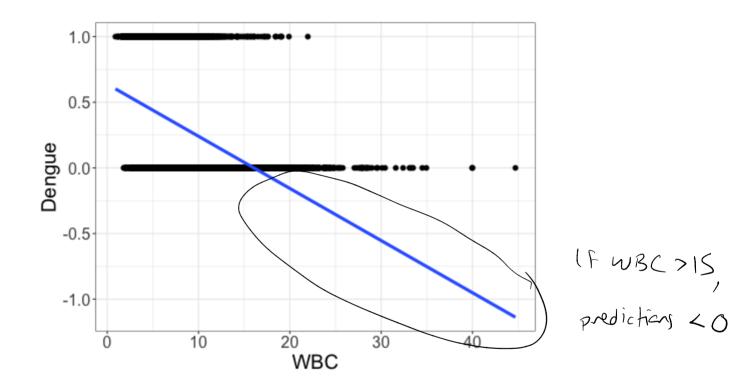
Second attempt

random
$$Y_i \sim Bernoulli(p_i)$$
 $p_i = \mathbb{P}(Y_i = 1|WBC_i)$ Systematic component (urang) $p_i = eta_0 + eta_1 WBC_i$

Are there still any potential issues with this approach?

Pi
$$\in CO_1O$$
 but $B_0 + B_1 \times BC_1$ $\in (-\infty, \infty)$ (unless $B_1 = O$)

Don't fit linear regression with a binary response



instead: fit a cone!

Fixing the issue: logistic regression

$$Y_i \sim Bernoulli(p_i)$$

random component

$$g(p_i) = \beta_0 + \beta_1 WBC_i$$

Systematic component

where $g:(0,1) o \mathbb{R}$ is unbounded.

Usual choice:
$$g(p_i) = \log\left(\frac{p_i}{1-p_i}\right)$$

Nink function log odds

inks parameter p_i and logit

to predictor wBC;

Odds

Definition: If
$$p_i = \mathbb{P}(Y_i = 1|WBC_i)$$
, the odds are $\frac{p_i}{1-p_i}$

Example: Suppose that $\mathbb{P}(Y_i=1|WBC_i)=0.8$. What are the *odds* that the patient has dengue?

odds =
$$\frac{0.8}{1-0.8} = \frac{0.8}{0.2} = 4$$

So, prod. Patient has dergre = $4 \times \text{prob. Patient}$
does not have dergre

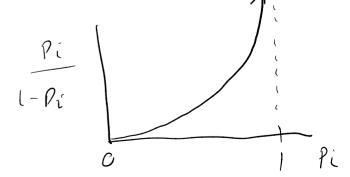
Odds

Definition: If
$$p_i = \mathbb{P}(Y_i = 1|WBC_i)$$
, the **odds** are $\frac{p_i}{1-p_i}$

The probabilities $p_i\in[0,1]$. The linear function $eta_0+eta_1WBC_i\in(-\infty,\infty)$. What range of values can $\frac{p_i}{1-p_i}$ take?

$$\begin{array}{cccc}
(F & P = 0) & odds = 0 \\
(F & P = 1) & odds = 00
\end{array}$$

$$\begin{array}{cccc}
odds & E(0, \infty)
\end{array}$$



Log odds

$$g(p_i) = \log\left(\frac{p_i}{1 - p_i}\right)$$

$$\log\left(\frac{\rho_i}{1 - \rho_i}\right) \in (-\infty, \infty)$$

$$\log\left(\frac{\rho_i}{1 - \rho_i}\right)$$

Binary logistic regression

$$Y_i \sim Bernoulli(p_i)$$
 (randam) $\log\left(rac{p_i}{1-p_i}
ight) = eta_0 + eta_1 WBC_i$ (systematic)

Note: Can generalize to $Y_i \sim Binomial(m_i, p_i)$, but we won't do that yet.

Example: simple logistic regression with dengue

$$Y_i = ext{dengue status} \ (0 = ext{no}, \, 1 = ext{yes}) \quad Y_i \sim Bernoulli(p_i)$$

$$\log\left(\frac{\hat{p}_{i}}{1-\hat{p}_{i}}\right) = 1.737 - 0.361 \ WBC_{i}$$

Work in groups of 2-3 for 5 minutes on the following questions:

- Are patients with a higher WBC more or less likely to have dengue?
- Interpret the estimated slope in context of a unit change in the log odds.
- What is the change in *odds* asociated with a unit increase in WBC?