STA 711 Homework 3

Due: Friday, February 3, 12:00pm (noon) on Canvas.

Instructions: Submit your work as a single PDF. For this assignment, you may include written
work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce
your results in your submission.

Maximum likelihood estimation

1. Let Y1,..., Y, be an iid sample from a distribution with pdf

fylA, o) = J;/Aexp {— (1 + i) log(y)} I{y > o},

where A\, o > 0. Find the maximum likelihood estimators of A and o. (Hint: find & first)

Score and information
2. Let Y1,...,Y, w Poisson(\).

(a) Find the score function U(\).

(b) Calculate the Fisher information Z(\) using Var(U(M)|A).
2

d
(c) Calculate the Fisher information Z(\) using —E [d)\zﬁ (AY) ‘ )\] (the required regularity

conditions hold in this example).

3. Consider a clinical trial to compare two treatments. n; subjects are given treatment 1, and ny
subjects are given treatment 2. Let Y7 be the number of people on treatment 1 who respond
favorably, and Y5 the number of people on treatment 2 who respond favorably. Assume that
Y7 ~ Binomial(ni,p1) and Ya ~ Binomial(nz,p2). The quantity of interest is the difference
in the two treatments: ¥ = p; — ps.

(a) Find the maximum likelihood estimate ¥ for 1.

(b) Since we have two parameters, p; and py, Fisher information is no longer a scalar.
Instead, Z(p1,p2) is a 2 X 2 matrix. Under appropriate regularity conditions, it can be
shown that the Fisher information matrix is given by

2
[I(P1,p2)]ij =—-E

Y)| .
6p,;8p/(pl’p2| )

Use this to calculate the Fisher information matrix Z(p1, p2).

(c) A sufficient condition for the formula in part (b) is given in Lemma 7.3.11 of Casella
& Berger, which essentially requires that we can differentiate under the integral sign.
Read Section 2.4 of Casella & Berger, on rules for differentiating under the integral sign.
Then explain why the regularity conditions hold for this problem.



Fisher scoring problems

In class, we learned how to use Fisher scoring to fit a logistic regression model. Recall that the
Fisher scoring algorithm estimates the parameters 8 of a model as follows:

e Start with an initial guess 5(¥)

e Update the estimate: Srt1) = g(r) +I*1(5(T))U(/3(T))

e Stop when AUt ~ ()

The purpose of these questions is to practice with Fisher scoring.

4. In this problem, we will work with the dengue data we discussed in class. A CSV containing
the data can be downloaded in R by running

dengue <- read.csv("https://sta711-s23.github.io/homework/dengue.csv")

For this problem, we are interested in modeling the relationship between platelet count and
dengue fever. Let PLT; denote the platelet count of patient ¢, and Y; denote their dengue
status (0 = negative, 1 = positive). Our logistic regression model is

(a)
(b)

Y; ~ Bernoulli(p;)

1%( b >—5m+&PDE
1—p;

Fit this logistic regression model in R, and report the estimated coefficients 30 and 31.

In R, write a function U which calculates U(/3) using the dengue data. For example, if
B = (1.8,0)T then your function should produce the following:

U(c(1.8, 0))
[1] -3211.612 -820195.802

In R, write a function I which calculates Z(3) using the dengue data. For example, if
B = (1.8,0)T then your function should produce the following:

> I(c(1.8, 0))

[,1] [,2]
[1,] 696.2918 161214.3
[2,] 161214.2603 41783775.1

Suppose that we use Fisher scoring to estimate (3, and our current estimate is B =
(1.8,0)T. Calculate the updated estimate 3"+,

Use your code from (b) and (c) to write code which implements Fisher scoring until
convergence, beginning with O = (1.8,0)T. For the purpose of this question, stop
when

max{|g " — g7, 167 — 57|} < 0.0001

Does your final estimate match the estimated coefficients in (a)? How many scoring
iterations did it take to converge?



5. One alternative to Fisher scoring is gradient ascent, variations of which are often used to fit
complicated machine learning models for which it is challenging to calculate the Hessian /
Fisher information. Rather than the Fisher information, gradient ascent uses a learning rate
(or step size) v > 0 to update coefficient estimates.

e Start with an initial guess 50
e Update the estimate: 30+D = g 4 AU (3(")
e Stop when AUt ~ ()
(a) Modify your code from 4(e) to implement gradient ascent instead of Fisher scoring. Use
a learning rate (step size) of v = 0.0000001, begin with 8(°) = (1.8,0)”, and run for 5000

iterations (do not run until convergence!). Report the estimated coefficients after 5000
steps. Why do you think Fisher scoring performs better here than gradient ascent?

6. So far, we have applied Fisher scoring to estimate parameters in logistic regression models.
How does this relate to estimation for linear regression models?

Consider the model
Y ~ N(Miv 02)
pi = BT X;

where 8 = (8o, B1, -, Br)T and X; = (1, Xi 1, .., Xi,k)T. Suppose we observe data (X1, Y1), ..., (X, Yn),
and we want to estimate [3.

(a) Write down the log likelihood function ¢(5|X,Y).
(b) Show that the score function, in matrix form, is given by

U() = X" (Y - ),

where p = Xp5.
(c) Set the score equal to 0 and solve for 5 to get

B=xX"X)"'xTY
(d) Show that the Hessian of the log likelihood, in matrix form, is given by

H(5) = — 5 X'X

(e) As we can see from (c), for linear regression we can get a closed form for B. But for
the sake of comparison with logistic regression, let’s suppose instead that we use Fisher
scoring. Let 3 be any initial estimate of 8. Show that the result from a single iteration

of Fisher scoring is R
AW =B = (XTX)'X"Y

(in other words, Fisher scoring converges in a single step).



Sneak peek: Poisson regression

7. So far, we have worked with logistic regression models for a binary response. In STA 712, we
will work with other types of response variables, like a Poisson response. This question will
give you a preview of Poisson regression, while giving you practice with Fisher scoring.

Consider the Poisson regression model
Y; ~ Poisson(\;)
log(\i) = 87X,

where 8 = (8o, B1, -, Br)T and X; = (1, Xi 1, ..., X; k)T . Suppose we observe data (X1, Y1), ..., (Xn, Yn),
where X; = (1, Xi 1, ..., Xix)T € RFFL. (Since A > 0 for a Poisson variable, log()\) € (—o0, 00),
which makes it reasonable for log()\;) to be a linear function of the Xs).

(a) Show that the score function is
U(B) =X (Y =X,

where A = (A1,..., \,) 7.
(b) Let W = diag(\1, ..., \y), where \; = exp{37 X;}. By calculating the variance of U(}3),
show that the Fisher information is

I(B) = XTWX.

(c) In R, simulate n = 500 observations (Xi,Y1),...,(Xy,Y,). Draw X, < N(0,1), and
Y; ~ Poisson(\;), where log(\;) = —2 +2X 1.

(d) Using your simulated data from part (c), fit a Poisson regression model of ¥ on X, and
report the fitted model coefficients. To fit a Poisson regression model in R:
glm(y ~ x, family = poisson)

(e) Modify your code from question 4 to implement Fisher scoring for Poisson regression
with the simulated data. Begin with 3(®) = (0,0)”, and stop when

max{| 8 = 57, 187 — 517} < 0.0001

Does your final estimate match the estimated coefficients in (d)? How many scoring
iterations did it take to converge?



